THE COSMOLOGICAL DISTANCE SCALE

How do astronomers measure the distances to stars and galaxies?
Near York Minster in England is this interesting plaque which refers to one of the methods discovered in the $18^{\text {th }}$ century. We shall return to it in due course, but first some basics.

Click to continue

If we look at a nearby object such as a finger with one eye and then the other eye it appears to jump back and forth against the distant background.

Similarly, a single observer views an object in a given direction ...
... but another observer views the same object in a different direction.

The angle between the two directions is called . . .
. . . and the method is called 'trigonometric parallax'.

Click to continue

The distance between the two observers is the baseline.

Baseline

Click to continue

The Earth can be used as a baseline for nearby objects, such as planets.

Parallax

In the $17^{\text {th }}$ century, astronomer Edmund Halley suggested that the transit of the planet Venus across the face of the Sun could be used to determine the scale of the solar system.

Transit of Venus

An observer at 'A' will observe Venus at the Sun's limb when Venus is at ' a '.
An observer at ' B ' will observe Venus at the Sun's limb when Venus is at ' b '.

Click to continue

Transit of Venus

In theory the precise time when the edge of Venus crossed the limb of the Sun was to be measured from widely spread locations on the Earth's surface.

In practice, however, observers found it difficult to time the event with sufficient precision because of an effect known as:

- the black drop!

Click to continue

Transit of Venus, 8 June 2004
(David Le Conte, Guernsey Observatory

Transits of Venus across the face of the Sun are rare. There was none in the $20^{\text {th }}$ century, the previous one having taken place in 1882. There was one in 2004 and another in 2012, but the next will not be until 2117!

Click to continue

There are now better ways of determining the Astronomical Unit, such as radar.
Nevertheless, Halley's method retains an historic interest, and so observers at the Guernsey Observatory took the necessary measurements in 2004 using three independent telescopes.

Results of transit of Venus observations

La Société Guernesiaise Astronomical Observatory
8 June 2004

Average of three independent observers: 149,582,882 km
Accepted value: $149,597,870 \mathrm{~km}$
Difference: $\quad 14,988 \mathrm{~km}(0.01 \%)$

Click to continue

Transits of Mercury across the face of the Sun are less rare than those of Venus.
This montage of two images contrasts the sizes of transits of Mercury and Venus.

Transit of Venus (58 arcsec), 8 June 2004
and transit of Mercury (12 arcsec), 9 May 2016

We can now measure the distances of planets by bouncing radar signals off them, and measuring the travel time of the signal.

Earth

The longest regular baseline is the diameter of the Earth's orbit,
giving 'annual parallax'

Earth in Winter

The unit of distance is the parsec, the distance of a star which subtends an angle of 1 arc-second with a baseline of 1 astronomical unit. It is equal to 3.26 light-years.

Click to continue

The annual motion of the Earth makes the star appear to move in a small ellipse

The farther away the object, the smaller the parallax angle

Click to continue

Only nearby stars can be measured in this way; the annual parallax of very distant stars is too small to be measured

The star 61 Cygni was the first one whose parallax (0.369 arc-seconds) was measured by Friedrich Bessel in 1838, giving a distance of 10.3 light-years.

Click to continue

61 Cygni, a double star, is close enough for its motion to be observed.

Proper motion of double star 61 Cygni at one-year intervals

The distance of stars whose parallax can be measured in this way is limited to about 100 parsecs. Here are all stars in the Orion region, to 14th magnitude

. . . and here are the stars in same region, which are within 100 parsecs.

Distances of open star clusters, such as the Hyades cluster can be determined from the proper motions of stars.

Click to continue

Spectroscopic parallax
This is the spectrum of the star Aldebaran

From such a spectrum we can determine the star's temperature and surface gravity.
This gives us its mass and luminosity, and therefore its distance.
'Planetary nebulae', which are the remains of dead stars, have similar absolute brightnesses, so their distances can be determined from their apparent brightness.

The distances of globular clusters, which contain hundreds of thousands of stars, can be determined from their brightest stars.

The brightest stars of nearby galaxies can be resolved and their distances determined as such stars have similar brightnesses.

Which brings us back to John Goodricke and his observations of the star δ (delta) Cephei in 1784.

From a window in Treasurers House near this tablet. the young deaf and dumb astronomer

> JOHN GOODRICKE
> $1764-1786$
who was elecied a Fellow of the Royal Sociely at the age of 21 . observed the periodicity of the star ALGOL and discovered the variation of δ CEPHEI and other stars thus laying the foundation of modern measurement of the Universe
δ Cephei is the prototype of the Cepheid class of variable stars whose brightness changes periodically.

Cepheus

Click to continue

Cepheid variables are all about the same temperature, but pulsate with a periodicity which is dependent on their size and hence their luminosities.

They can be seen in distant galaxies and are, therefore, important for determining galactic distances. Here is a sequence of images of a Cepheid variable in the galaxy M100 showing its variation in brightness over a period of a month.

Another method is to observe supernovae, very hot stars which explode at the end of their lives, and which have similar luminosities.
Here is one in the galaxy M51, which exploded in July 2005.

The nearest one in historic times was in the Large Magellanic Cloud in 1987. It can be seen in these before and after pictures.

Click to continue

The final method, used for very distant galaxies, is based on the redshift of their spectra. This is caused by their recession velocity, which increases with their distance because of the expansion of space.

Here are five galaxies at different distances, together with their recession velocities. The redshift is shown against comparative spectra, the arrows on the spectra indicating the amount of redshift.

| | $\left.\begin{array}{llll} H+K \\ 1 \\| & \\| & 1 \end{array} \right\rvert\,$ | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|
| | \|i| || || | |
| Dirgo | 1,200 km/s |
| 2 | \||| || || | || |
| | \\|\|\| \|| | \|| |
| Ursa Major | $15,000 \mathrm{~km} / \mathrm{s}$ |
| .. | \||| || | || | |
| | $\\|\\|$ \\| \| \| \| |
| Corona Borealis | 22,000 km/s |
| | |
| \rightarrow * | $111 \\| 11111$ |
| Boôtes | $39,000 \mathrm{~km} / \mathrm{s}$ |
| | $11 \\| 111111$ |
| | $\\|\overrightarrow{\\|}\\| \\|$ \\| |
| Hydra | $61,000 \mathrm{~km} / \mathrm{s}$ |

This gives rise to the Hubble Diagram which shows the linear dependence of recession speed of galaxies with their distances.

[^0]Click to continue

So we have a 'Cosmological Distance Ladder' of methods of measuring distances, each overlapping with the next.

Hubble Diagram

Supernovae

Cepheid variables

Brightest objects

Main sequence fitting

Spectroscopic parallax

Cluster motions

Trigonometric parallax

This presentation has been brought to you by the Astronomy Section of La Société Guernesiaise, Guernsey, in the British Channel Islands.

For more astronomical presentations go to: www.astronomy.org.gg/do-and-see/teachingresources

This presentation has been brought to you by the Astronomy Section of La Société Guernesiaise, Guernsey, in the British Channel Islands.

For more astronomical presentations go to:

[^0]: Distance

